FIELD MEASUREMENTS OF IMPACT SOUND INSULATION OF FLOORS

Date of Test: Tuesday, 22 September 2020

Project No.: 4225

Testing Company: Koikas Acoustics Checked by : Nick Koikas

Place of Test: Residential building in Macquarie Park Client Paxwood Pty Ltd (Clever Choice Design Floors)

Client Address

Receiver Rm

1 250

1 600

2 000 2 500

3 150

4 000

5 000

	Name	Thickness (mm	Density (SI)
Description	Hybrid 6mm	6	
of	Clever Cork 5mm underlay	5	
Floor	Concrete	200	
System			

 m^2

Width

3.6

Length

3.6

Area

13

Height

2.7

Volume

35

Room Width: Floor Length: 3.6 m 13 m² Dimensions Area: Sample Width: m . Dimensions Length: m

Area:

Location

Unit directly below - livingarea

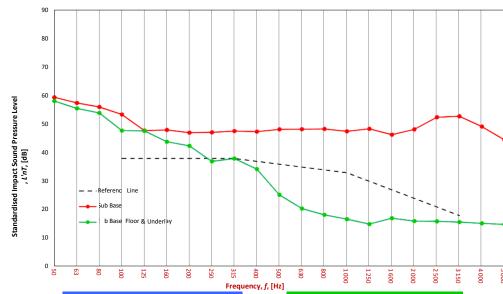
Frequency	L'nT (one-third octave) dB			
f Hz	Sub Base	Sub Base Floor	Sub Base Floor Underlay	
50	59.4	N/A	58.1	
63	57.5	N/A	55.5	
80	56.0	N/A	53.9	
100	53.4	N/A	47.8	
125	47.8	N/A	47.7	
160	48.0	N/A	43.9	
200	47.0	N/A	42.4	
250	47.1	N/A	37.0	
315	47.6	N/A	38.0	
400	47.4	N/A	34.3	
500	48.2	N/A	25.3	
630	48.3	N/A	20.4	
800	48.3	N/A	18.3	
1 000	47.5	N/A	16.7	

N/A N/A

N/A

N/A

N/A


N/A

150

16.0

15.3

14.9

Walls

Plasterboard

	Sub Base					
	L'nT,w	56	AS ISO 717.2 - 2004			
	Ci	-10	AS ISO 717.2 - 2004			
	Ci(50-2500)	-6	AS ISO 717.2 - 2004			
	Ci(63-2000)	-8	AS ISO 717.2 - 2004			
AAAC		2 Star	AAAC Guidleline			
FIIC		46	ASTM F1007-14			

484

463

48.2

52.8

49.2

44.5

Room Surfaces

Floor

Carpet

Ceiling

Plasterboard

Definitions of Noise Metrics

Field Impact Insulation Class is a single-number rating of how well a floor system attenuates impact type sounds, such as footsteps. Calculated from third-octave band normalised impact sound pressure level data and referenced to $10\,m^2$ as described in ASTM E989. The higher the single-number rating, the better its impact insulation performance.

I'nTw

The Weighted Standardised Impact Sound Pressure Level when measured in situ referenced to a reverberation time (RT60) of 0.5 seconds. Used by the AAAC to determine their respective Star Rating.

Spectrum adaption term is a low frequency correction factor. Typically for massive floors such as concrete, the values are about zero while for timber joist floors Ci is positive because of the low resonant frequencies. Considers frequency range between 100 -and 2500 Hz.

Ci(50-2500):

Same as above, but for the frequency range 50 -2500 Hz.

Same as above, but for the frequency range 125 -2000 Hz.

AAAC Star R.	2	3	4	5	6
L'nT,w	65	55	50	45	40
FIIC	45	55	60	65	70
Comments	Below BCA 62	Clearly Audible	Audible	Barely Inaudible	Normally Inaudible